
Developing Securing Flourishing Excelling

1.1.1 Architecture of the CPU
I can identify the main parts of the 
CPU and know it carries out 
instructions.

I can describe what happens in the fetch–execute 
cycle and name the key components such as the 
ALU, CU, cache, and registers.

I can explain what each CPU component and 
register does and how they work together in the 
fetch–execute cycle.

I can confidently explain how the CPU processes instructions step-
by-step, including the role of registers and the Von Neumann 
architecture.

1.1.2 CPU performance I know that factors like clock 
speed, cache size and number of 
cores affect how fast the CPU 
works.

I can describe how changing clock speed, cache 
size or cores can make a CPU faster or slower.

I can explain clearly how these factors impact 
CPU performance and give examples of when 
each is most important.

I can evaluate how combinations of CPU characteristics affect 
performance in different situations and justify which would be 
most effective.

1.1.3 Embedded systems
I can recognise that some devices 
have built-in computers called 
embedded systems.

I can describe what an embedded system is and 
give simple examples (e.g. washing machine, sat-
nav).

I can explain the main characteristics of 
embedded systems and how they are used for 
specific tasks.

I can compare embedded and general-purpose systems and 
explain the advantages of using embedded systems in real 
products.

1.2.1 Primary storage (Memory)
I can recognise that computers 
use memory to store data and 
instructions.

I can describe the difference between RAM and 
ROM and explain their basic purposes.

I can explain how RAM, ROM, and cache work 
together and why virtual memory is needed.

I can explain how different types of memory interact to improve 
performance, giving clear examples.

1.2.2 Secondary storage I can identify that computers use 
storage devices to save data.

I can describe common types of storage such as 
optical, magnetic, and solid-state.

I can explain the advantages and disadvantages 
of each storage type and suggest suitable 
devices for different uses.

I can evaluate which storage device is most suitable for a scenario, 
using characteristics such as capacity, speed, and reliability.

1.2.3 Units I can recognise the basic units of 
data (bit, byte, kilobyte, etc.).

I can convert between units like KB, MB, and GB, 
and understand that data must be stored in 
binary.

I can calculate file sizes for text, images, and 
sound using formulas.

I can confidently calculate and compare storage requirements 
across file types, explaining how characteristics like bit depth and 
resolution affect size.

1.2.4 Data storage

I can convert small num I can 
recognise that sound can be 
stored digitally.bers between 
denary and binary. I can 
recognise that computers use 
codes to represent letters and 
symbols. I can recognise that 
images are made up of pixels.

I can convert between binary, denary, and 
hexadecimal numbers and carry out simple binary 
addition. I can describe how ASCII and Unicode 
are used to represent text on computers. I can 
describe how colour depth and resolution affect 
image quality. I can describe how sound is 
sampled and the meaning of sample rate and bit 
depth.

I can explain overflow errors, use binary shifts, 
and convert numbers confidently between 
systems. I can explain how the number of bits 
used affects the range of characters that can be 
represented. I can explain how colour depth and 
resolution affect both image quality and file size. 
I can explain how sample rate, duration, and bit 
depth affect sound quality and file size.

I can apply binary, hexadecimal, and shift knowledge to real exam-
style problems and explain their impact on data representation. I 
can compare ASCII and Unicode, explaining why Unicode is 
needed for global communication. I can analyse how changing 
colour depth or resolution impacts storage and quality in different 
contexts. I can evaluate trade-offs between sound quality and file 
size for different digital audio formats.

1.2.5 Compression I can understand that 
compression reduces file size.

I can describe the difference between lossy and 
lossless compression.

I can explain how lossy and lossless 
compression work and when each would be 
used.

I can evaluate the impact of using lossy or lossless compression in 
different scenarios (e.g., music vs text files).

R0
94

 N
EA

 V
is

ua
l I

de
nt

ity
 a

nd
 D

ig
ita

l G
ra

ph
ic

s

Year 10 Curriculum Checkpoints: What do students know and what can they do?
Computer Science

Exam 1

1.
1 

Sy
st

em
s 

Ar
ch

ite
ct

ur
e



1.3.1 Networks and topologies I can recognise that computers 
can be connected together to 
share information. I can 
recognise that the Internet 
connects networks together.

I can describe what a LAN and WAN are and name 
basic network hardware such as routers and 
switches. I can describe what the Internet, DNS, 
and the Cloud are used for.

I can explain how hardware, bandwidth and 
number of devices affect network performance, 
and describe client-server and peer-to-peer 
setups. I can explain how DNS converts web 
addresses to IP addresses and how the Cloud 
provides online services.

I can compare different network types, hardware and topologies, 
evaluating which setup would be most effective for different 
scenarios. I can evaluate advantages and disadvantages of DNS, 
the Cloud, and hosting options when designing or maintaining a 
network.

1.3.2 Wired and wireless networks, 
protocols and layers

I can identify examples of wired 
and wireless connections. I can 
recognise that data needs to be 
kept safe when sent across a 
network. I can recognise that 
computers use rules to 
communicate.

I can describe the differences between Ethernet, 
Wi-Fi, and Bluetooth connections and their basic 
uses. I can describe what encryption is and why IP 
and MAC addresses are important. I can describe 
what a protocol and a standard are, and name a 
few examples. I can explain how common 
protocols (such as HTTP, HTTPS, FTP, and SMTP) 
are used to transfer data across networks.

I can explain advantages and disadvantages of 
wired and wireless connections and recommend 
suitable options for given needs. I can explain 
how encryption secures data and how IP and 
MAC addressing work within networks. I can 
explain how encryption secures data and how IP 
and MAC addressing work within networks. I can 
explain how common protocols (such as HTTP, 
HTTPS, FTP, and SMTP) are used to transfer data 
across networks.

I can evaluate and justify connection choices for real-world 
situations, considering speed, reliability, cost, and security. I can 
compare IPv4 and IPv6 formats and evaluate how encryption and 
addressing maintain privacy and security. I can explain how the 
TCP/IP model organises these protocols into layers and analyse 
the benefits of using a layered approach.

1.4.1 Threats to computer systems 
and networks

I can recognise that computers 
and networks can be attacked in 
different ways.

I can describe common types of attacks such as 
malware, phishing, and brute-force attacks.

I can explain how different attacks work and what 
the attacker is trying to achieve, such as stealing 
data or disrupting services.

I can analyse and compare different types of cyber attacks, 
explaining their methods, impacts, and how they exploit 
vulnerabilities.

1.4.2 Identifying and preventing 
vulnerabilities

I can recognise that there are 
ways to protect computer 
systems from attacks.

I can describe basic prevention methods such as 
firewalls, passwords, and anti-malware software.

I can explain how a range of prevention methods 
(like penetration testing, encryption, and 
physical security) help reduce risks.

I can evaluate which prevention methods are most effective for 
different situations and explain how layers of protection work 
together to keep systems secure.

1.5.1 Operating systems I can recognise that a computer 
needs an operating system to 
work.

I can describe the main functions of an operating 
system, such as providing a user interface and 
managing files and memory.

I can explain how the operating system manages 
memory, hardware, users, and files to allow 
multitasking and secure access.

I can explain in detail how an operating system coordinates 
resources between hardware and software, and evaluate how 
different features improve performance and usability.

1.5.2 Utility software
I can recognise that computers 
use utility software to help with 
maintenance tasks.

I can describe examples of utility software such 
as encryption, defragmentation, and 
compression.

I can explain how each type of utility software 
works and why it is important for system 
performance and security.

I can evaluate how utility software improves efficiency, security, 
and storage management, comparing which tools are most useful 
in different contexts.

1.
6 

Et
hi

ca
l, 

Le
ga

l, 
C

ul
tu

ra
l 

an
d 

En
vi

ro
nm

en
ta

l 
Im

pa
ct

s 
of

 D
ig

ita
l 

Te
ch

no
lo

g

1.6.1 - Ethial, Legal, Cultural and 
Environmental Impact

I can recognise that technology 
can have positive and negative 
effects on people and society.

I can describe different types of issues such as 
ethical, legal, cultural, environmental, and 
privacy issues, and give simple examples.

I can explain how different technologies create 
these issues and how laws like the Data 
Protection Act, Computer Misuse Act, and 
Copyright Act help protect people.

I can evaluate the impact of digital technology on society, explain 
how legislation addresses these issues, and justify the best type of 
software licence (open source or proprietary) for a given scenario.

R0
94

 N
EA

 V
is

ua
l I

de
nt

ity
 a

nd
 D

ig
ita

l G
ra

ph
ic

s
1.

4 
N

et
w

or
k 

Se
cu

rit
y

1.
5 

Sy
st

em
 S

of
tw

ar
e



2.1.1 - Computational Thinking

I can recognise that problems can 
be broken down into smaller 
parts.

I can describe the ideas of abstraction, 
decomposition, and algorithmic thinking.

I can explain how abstraction removes 
unnecessary detail, decomposition breaks down 
problems, and algorithmic thinking creates step-
by-step solutions.

I can confidently apply abstraction, decomposition, and 
algorithmic thinking to design efficient solutions to complex 
problems.

2.1.2 - Designing. Creating and 
Refining Algorithms

I can identify the inputs, 
processes, and outputs of a 
simple problem.

I can use flowcharts or pseudocode to design an 
algorithm that solves a problem.

I can refine algorithms using decomposition and 
selection/iteration, and identify and correct logic 
or syntax errors.

I can design clear, efficient, and well-structured algorithms using 
trace tables to test and refine solutions, explaining how each 
improvement makes the algorithm more effective.

2.1.3 - Searching and Sorting 
Algorithms

I can recognise that computers 
use algorithms to search and sort 
data.

I can describe how basic searches (linear and 
binary) and sorts (bubble, insertion, and merge) 
work in simple terms.

I can explain the main steps of each searching 
and sorting algorithm and apply them to small 
data sets.

I can compare the efficiency and use of different searching and 
sorting algorithms, explaining which is most suitable in different 
situations.

2.2.1 - Programming Fundamentals

I can recognise what variables, 
inputs, and outputs are in a 
program.

I can create simple programs that use variables, 
inputs, outputs, and basic arithmetic and Boolean 
operators.

I can use sequence, selection, and iteration 
effectively to control how a program runs.

I can design and write efficient programs that combine sequence, 
selection, and iteration to solve more complex problems.

2.2.2 - Data Types

I can recognise that different 
types of data are used in 
programs.

I can use basic data types such as integers, real 
numbers, strings, and booleans in my code.

I can choose suitable data types for a task and 
use type casting when needed.

I can justify my choice of data types and apply them accurately in 
different programming contexts.

2.2.3 - Additional Programming 
Techniques

I can recognise that programs can 
use extra features such as lists, 
strings, and files.

I can use basic string manipulation and simple 
arrays or lists in my programs.

I can use a range of programming techniques, 
including file handling, arrays, functions, and 
random numbers.

I can confidently combine advanced techniques (like 2D arrays, 
SQL, and subprograms) to create structured, reusable, and 
efficient code.

2.3.1 - Defensive Design

I can recognise that programs 
need to deal with errors and 
prevent misuse.

I can add simple validation checks and use 
authentication like usernames and passwords.

I can design programs that include input 
validation, authentication, and clear 
commenting to make code easier to understand 
and maintain.

I can create well-structured, secure programs using subprograms, 
consistent naming, indentation, and commenting that make code 
easy to debug, maintain, and expand.

2.3.2 - Testing

I can recognise that programs 
need testing to check they work 
correctly.

I can describe different types of testing (such as 
iterative and final) and identify syntax and logic 
errors.

I can use suitable test data (normal, boundary, 
and erroneous) to check if my program works 
correctly.

I can plan, carry out, and refine tests effectively, explaining how my 
chosen test data helps find and fix errors in complex programs.

2.
4 

- B
oo

le
an

 L
og

ic

2.4.1 - Boolean Logic
I can recognise the AND, OR, and 
NOT logic gates.

I can draw and interpret simple logic gate 
diagrams and complete truth tables for one gate.

I can combine logic gates using AND, OR, and 
NOT to create and complete truth tables for more 
complex circuits.

I can confidently create and simplify multi-gate logic diagrams and 
truth tables, explaining how logical operations can be used to 
solve real-world problems.

2.
3 

- P
ro

du
ci

ng
 R

ob
us

t 
Pr

og
ra

m
s

Exam 2
2.

1 
- A

lg
or

ith
m

s
2.

2 
- P

ro
gr

am
m

in
g 

Fu
nd

am
en

ta
ls



2.5.1 - Languages

I can recognise that there are 
different types of programming 
languages.

I can describe the difference between high-level 
and low-level languages and explain why 
translators are needed.

I can explain the purpose of compilers and 
interpreters and describe their advantages and 
disadvantages.

I can evaluate when to use high-level or low-level languages and 
justify whether a compiler or interpreter would be more effective in 
a given situation.

2.5.2 - The Integrated Development 
Environment (IDE)

I can recognise that programmers 
use software to help them write 
and test programs.

I can describe the main features of an IDE, such 
as editors, translators, and error checking.

I can explain how IDE tools such as error 
diagnostics, debugging, and run-time 
environments help programmers develop 
programs.

I can confidently use and evaluate IDE tools to write, test, and 
improve code efficiently, explaining how each tool supports the 
development process.2.

5 
- P

ro
gr

am
m

in
g 

La
ng

ua
ge

s 
an

d 
In

te
gr

at
ed

 D
ev

el
op

m
en

t 
En

vi
ro

nm
en

ts
 (I

D
Es

)


