Year 10

Curriculum Checkpoints: What do students know and what can they do?

Computer Science

Developing

Securing

Flourishing

Excelling

Exam1

1.1 Systems Architecture

1.1.1 Architecture of the CPU

| can identify the main parts of the
CPU and know it carries out
instructions.

| can describe what happens in the fetch-execute
cycle and name the key components such as the
ALU, CU, cache, and registers.

| can explain what each CPU component and
register does and how they work together in the
fetch-execute cycle.

| can confidently explain how the CPU processes instructions step-
by-step, including the role of registers and the Von Neumann
architecture.

1.1.2 CPU performance

I know that factors like clock
speed, cache size and number of
cores affect how fast the CPU
works.

| can describe how changing clock speed, cache
size or cores can make a CPU faster or slower.

| can explain clearly how these factors impact
CPU performance and give examples of when
each is mostimportant.

| can evaluate how combinations of CPU characteristics affect
performance in different situations and justify which would be
most effective.

1.1.3 Embedded systems

| can recognise that some devices
have built-in computers called
embedded systems.

| can describe what an embedded system is and
give simple examples (e.g. washing machine, sat-
nav).

| can explain the main characteristics of
embedded systems and how they are used for
specific tasks.

| can compare embedded and general-purpose systems and
explain the advantages of using embedded systems in real
products.

R094 NEA Visual Identity and Digital Graphics

1.2.1 Primary storage (Memory)

| can recognise that computers
use memory to store data and
instructions.

| can describe the difference between RAM and
ROM and explain their basic purposes.

I can explain how RAM, ROM, and cache work
together and why virtual memory is needed.

I can explain how different types of memory interact to improve
performance, giving clear examples.

1.2.2 Secondary storage

| can identify that computers use
storage devices to save data.

| can describe common types of storage such as
optical, magnetic, and solid-state.

I can explain the advantages and disadvantages
of each storage type and suggest suitable
devices for different uses.

| can evaluate which storage device is most suitable for a scenario,
using characteristics such as capacity, speed, and reliability.

1.2.3 Units

| can recognise the basic units of
data (bit, byte, kilobyte, etc.).

| can convert between units like KB, MB, and GB,
and understand that data must be stored in
binary.

I can calculate file sizes for text, images, and
sound using formulas.

| can confidently calculate and compare storage requirements
across file types, explaining how characteristics like bit depth and
resolution affect size.

1.2.4 Data storage

I can convert smallnum I can
recognise that sound can be
stored digitally.bers between
denary and binary. | can
recognise that computers use
codes to represent letters and
symbols. | can recognise that
images are made up of pixels.

| can convert between binary, denary, and
hexadecimal numbers and carry out simple binary
addition. | can describe how ASCIl and Unicode
are used to represent text on computers. | can
describe how colour depth and resolution affect
image quality. | can describe how sound is
sampled and the meaning of sample rate and bit
depth.

| can explain overflow errors, use binary shifts,
and convert numbers confidently between
systems. | can explain how the number of bits
used affects the range of characters that can be
represented. | can explain how colour depth and
resolution affect both image quality and file size.
| can explain how sample rate, duration, and bit
depth affect sound quality and file size.

I can apply binary, hexadecimal, and shift knowledge to real exam-
style problems and explain their impact on data representation. |
can compare ASCII and Unicode, explaining why Unicode is
needed for global communication. | can analyse how changing
colour depth or resolution impacts storage and quality in different
contexts. | can evaluate trade-offs between sound quality and file
size for different digital audio formats.

1.2.5 Compression

| can understand that
compression reduces file size.

| can describe the difference between lossy and

lossless compression.

I can explain how lossy and lossless
compression work and when each would be
used.

| can evaluate the impact of using lossy or lossless compression in
different scenarios (e.g., music vs text files).

R094 NEA Visual Identity and Digital Graphics

1.3.1 Networks and topologies

| can recognise that computers
can be connected together to
share information. I can
recognise that the Internet
connects networks together.

| can describe what a LAN and WAN are and name
basic network hardware such as routers and
switches. | can describe what the Internet, DNS,
and the Cloud are used for.

| can explain how hardware, bandwidth and
number of devices affect network performance,
and describe client-server and peer-to-peer
setups. | can explain how DNS converts web
addresses to IP addresses and how the Cloud
provides online services.

| can compare different network types, hardware and topologies,
evaluating which setup would be most effective for different
scenarios. | can evaluate advantages and disadvantages of DNS,
the Cloud, and hosting options when designing or maintaining a
network.

1.3.2 Wired and wireless networks,
protocols and layers

| can identify examples of wired
and wireless connections. | can
recognise that data needs to be
kept safe when sent across a
network. | can recognise that
computers use rules to
communicate.

| can describe the differences between Ethernet,
Wi-Fi, and Bluetooth connections and their basic
uses. | can describe what encryption is and why IP
and MAC addresses are important. | can describe
what a protocol and a standard are, and name a
few examples. | can explain how common
protocols (such as HTTP, HTTPS, FTP, and SMTP)
are used to transfer data across networks.

T'can explain advantages and disadvantages of
wired and wireless connections and recommend
suitable options for given needs. | can explain
how encryption secures data and how IP and
MAC addressing work within networks. | can
explain how encryption secures data and how IP
and MAC addressing work within networks. | can
explain how common protocols (such as HTTP,
HTTPS, FTP, and SMTP) are used to transfer data
across networks.

| can evaluate and justify connection choices for real-world
situations, considering speed, reliability, cost, and security. | can
compare IPv4 and IPv6 formats and evaluate how encryption and
addressing maintain privacy and security. | can explain how the
TCP/IP model organises these protocols into layers and analyse
the benefits of using a layered approach.

1.4 Network Security

1.4.1 Threats to computer systems
and networks

| can recognise that computers
and networks can be attacked in
different ways.

| can describe common types of attacks such as
malware, phishing, and brute-force attacks.

| can explain how different attacks work and what
the attacker is trying to achieve, such as stealing
data or disrupting services.

| can analyse and compare different types of cyber attacks,
explaining their methods, impacts, and how they exploit
vulnerabilities.

1.4.2 Identifying and preventing
vulnerabilities

| can recognise that there are
ways to protect computer
systems from attacks.

| can describe basic prevention methods such as
firewalls, passwords, and anti-malware software.

I can explain how a range of prevention methods
(like penetration testing, encryption, and
physical security) help reduce risks.

| can evaluate which prevention methods are most effective for
different situations and explain how layers of protection work
together to keep systems secure.

1.5 System Software

1.5.1 Operating systems

| can recognise that a computer
needs an operating system to
work.

| can describe the main functions of an operating
system, such as providing a user interface and
managing files and memory.

| can explain how the operating system manages
memory, hardware, users, and files to allow
multitasking and secure access.

I can explain in detail how an operating system coordinates
resources between hardware and software, and evaluate how
different features improve performance and usability.

1.5.2 Utility software

| can recognise that computers
use utility software to help with
maintenance tasks.

| can describe examples of utility software such
as encryption, defragmentation, and
compression.

I can explain how each type of utility software
works and why it is important for system
performance and security.

I can evaluate how utility software improves efficiency, security,
and storage management, comparing which tools are most useful
in different contexts.

1.6 Ethical, Legal, Cultural

and Environmental
Impacts of Digital

Technolog

1.6.1 - Ethial, Legal, Cultural and
Environmental Impact

| can recognise that technology
can have positive and negative
effects on people and society.

| can describe different types of issues such as
ethical, legal, cultural, environmental, and
privacy issues, and give simple examples.

I can explain how different technologies create
these issues and how laws like the Data
Protection Act, Computer Misuse Act, and
Copyright Act help protect people.

I can evaluate the impact of digital technology on society, explain
how legislation addresses these issues, and justify the best type of
software licence (open source or proprietary) for a given scenario.

Exam 2

2.1 - Algorithms

2.1.1 - Computational Thinking

| can recognise that problems can
be broken down into smaller
parts.

| can describe the ideas of abstraction,
decomposition, and algorithmic thinking.

| can explain how abstraction removes
unnecessary detail, decomposition breaks down
problems, and algorithmic thinking creates step-
by-step solutions.

| can confidently apply abstraction, decomposition, and
algorithmic thinking to design efficient solutions to complex
problems.

2.1.2 - Designing. Creating and
Refining Algorithms

| can identify the inputs,
processes, and outputs of a
simple problem.

| can use flowcharts or pseudocode to design an
algorithm that solves a problem.

| can refine algorithms using decomposition and
selection/iteration, and identify and correct logic
or syntax errors.

| can design clear, efficient, and well-structured algorithms using
trace tables to test and refine solutions, explaining how each
improvement makes the algorithm more effective.

2.1.3 - Searching and Sorting
Algorithms

| can recognise that computers
use algorithms to search and sort
data.

| can describe how basic searches (linear and
binary) and sorts (bubble, insertion, and merge)
work in simple terms.

I can explain the main steps of each searching
and sorting algorithm and apply them to small
data sets.

| can compare the efficiency and use of different searching and
sorting algorithms, explaining which is most suitable in different
situations.

2.2 - Programming Fundamentals

2.2.1 - Programming Fundamentals

| can recognise what variables,
inputs, and outputs areina
program.

| can create simple programs that use variables,
inputs, outputs, and basic arithmetic and Boolean
operators.

| can use sequence, selection, and iteration
effectively to control how a program runs.

| can design and write efficient programs that combine sequence,
selection, and iteration to solve more complex problems.

2.2.2 - Data Types

| can recognise that different
types of data are used in
programs.

| can use basic data types such as integers, real
numbers, strings, and booleans in my code.

I can choose suitable data types for a task and
use type casting when needed.

I can justify my choice of data types and apply them accurately in
different programming contexts.

2.2.3 - Additional Programming
Techniques

| can recognise that programs can
use extra features such as lists,
strings, and files.

| can use basic string manipulation and simple
arrays or lists in my programs.

| can use a range of programming techniques,
including file handling, arrays, functions, and
random numbers.

| can confidently combine advanced techniques (like 2D arrays,
SQL, and subprograms) to create structured, reusable, and
efficient code.

| can design programs that include input

§ | can recognise that programs validation, authentication, and clear | can create well-structured, secure programs using subprograms,
§ need to deal with errors and | can add simple validation checks and use commenting to make code easier to understand |consistent naming, indentation, and commenting that make code
= E 2.3.1 - Defensive Design prevent misuse. authentication like usernames and passwords. and maintain. easy to debug, maintain, and expand.
= @©
O =
$e
S a
o
o I can recognise that programs | can describe different types of testing (such as |l can use suitable test data (normal, boundary,
o need testing to check they work |iterative and final) and identify syntax and logic and erroneous) to check if my program works I can plan, carry out, and refine tests effectively, explaining how my
2.3.2-Testing correctly. errors. correctly. chosen test data helps find and fix errors in complex programs.
(]
=)
o
-
c
3
§ | can combine logic gates using AND, OR, and I can confidently create and simplify multi-gate logic diagrams and
:-3 | can recognise the AND, OR, and [l candraw and interpret simple logic gate NOT to create and complete truth tables for more |truth tables, explaining how logical operations can be used to
o 2.4.1-Boolean Logic NOT logic gates. diagrams and complete truth tables for one gate. [complex circuits. solve real-world problems.

2.5 - Programming Languages
and Integrated Development

Environments (IDEs)

2.5.1- Languages

| can recognise that there are
different types of programming
languages.

| can describe the difference between high-level
and low-level languages and explain why
translators are needed.

| can explain the purpose of compilers and
interpreters and describe their advantages and
disadvantages.

| can evaluate when to use high-level or low-level languages and
justify whether a compiler or interpreter would be more effective in
a given situation.

2.5.2 - The Integrated Development
Environment (IDE)

| can recognise that programmers
use software to help them write
and test programs.

| can describe the main features of an IDE, such
as editors, translators, and error checking.

I can explain how IDE tools such as error
diagnostics, debugging, and run-time
environments help programmers develop
programs.

| can confidently use and evaluate IDE tools to write, test, and
improve code efficiently, explaining how each tool supports the
development process.

